
NetLogger

NetLogger: Distributed System
Monitoring and Analysis Tools

Data Intensive Distributed Computing Group
Lawrence Berkeley National Laboratory

Brian L. Tierney
Dan Gunter

NetLogger

Outline

• Why are we here?
– What is NetLogger?
– What is NetLogger good for?
– What is NetLogger not good for?

• NetLogger Components
– message format
– instrumentation library
– system monitoring tools
– visualization tools

• Instrumentation Techniques
• Case Studies

– HPSS Storage Manager
– Radiance luminosity application
– Parallel remote data server (DPSS)

• Current Work
– Monitoring Agents

NetLogger

Overview

• The Problem
– When building distributed systems, we often

observe unexpectedly low performance
• the reasons for which are usually not obvious

– The bottlenecks can be in any of the following
components:

• the applications
• the operating systems
• the disks or network adapters on either the sending or

receiving host
• the network switches and routers, and so on

• The Solution:
• Highly instrumented systems with precision timing

information and analysis tools

NetLogger

Bottleneck Analysis

• Distributed system users and developers often
assume the problem is network congestion
– This is often not true

• In our experience tuning distributed applications,
performance problems are due to:
– network problems: 40%
– host problems: 20%
– application design problems/bugs: 40%

• 50% client , 50% server

• Therefore it is equally important to instrument the
applications

NetLogger

Motivation

• To characterize the performance of distributed
applications, we have developed a methodology for
detailed, end-to-end, top-to-bottom monitoring and
analysis of significant events

– this allows coordinated monitoring of
applications, networks, and hosts

• This has proven invaluable for:
– isolating and correcting performance bottlenecks
– debugging distributed applications

NetLogger

NetLogger Toolkit

• We have developed the NetLogger Toolkit

– A set of tools which make it easy for distributed
applications to log interesting events at every
critical point

– NetLogger also includes tools for host and
network monitoring

• The approach is novel in that it combines network,
host, and application-level monitoring to provide a
complete view of the entire system.

NetLogger

Why “NetLogger”?

• The name “NetLogger” is somewhat misleading
– Should really be called: “Distributed

Application, Host, and Network Logger”

• “NetLogger” was a catchy name that stuck

NetLogger

When to use NetLogger

• When you want to:
– do performance/bottleneck analysis on

distributed applications
– determine which hardware components to

upgrade to alleviate bottlenecks
– do real-time or post-mortem analysis of

applications
– correlate application performance with system

information (ie: TCP retransmission's)
• works best with applications where you can follow

a specific item (data block, message, object)
through the system

NetLogger

When NOT to use NetLogger

• Analyzing massively parallel programs (e.g.: MPI)
– Current visualization tools don’t scale beyond

tracking about 20 types of events at a time

• Analyzing many very short events
– system will become overwhelmed if too many

events
– we typically use NetLogger to monitor events

that take > .5 ms
– e.g: probably don’t want to use to instrument

the UNIX kernel

NetLogger

NetLogger Components

• NetLogger Toolkit contains the following
components:
– NetLogger message format
– NetLogger client library
– NetLogger visualization tools
– NetLogger host/network monitoring tools

• Additional critical component for distributed
applications:
– NTP (Network Time Protocol) or GPS host clock is

required to synchronize the clocks of all systems

NetLogger

NetLogger Message Format

• We are using the IETF draft standard Universal Logger
Message (ULM) format:

• a list of “field=value” pairs
• required fields: DATE, HOST, PROG, and LVL

—DATE = YYYYMMDDHHSS.SSSSSS
—PROG: program name
—LVL is the severity level (Emergency, Alert, Error, Usage, etc.)

• followed by optional user defined fields
• http://www.ietf.org/internet-drafts/draft-abela-ulm-05.txt

• NetLogger adds this required fields:
• NL.EVNT, a unique identifier for the event being logged

—e.g.: SERVER_IN, VMSTAT_USER_TIME,
NETSTAT_RETRANSSEG

NetLogger

NetLogger Message Format

• Sample NetLogger ULM event:
DATE=19980430133038.055784 HOST=foo.lbl.gov
PROG=testprog LVL=Usage NL.EVNT=SEND_DATA
SEND.SZ=49332

– This says program named testprog on host
foo.lbl.gov performed event named SEND_DATA,
size = 49332 bytes, at the time given

• User-defined data elements (any number) are used to
store information about the logged event - for example:

• NL.EVNT=SEND_DATA SEND.SZ=49332
—the number of bytes of data sent

• NL.EVNT=NETSTAT_RETRANSSEGS NS.RTS=2
—the number of TCP retransmits since the previous event

NetLogger

NetLogger “Mission”

• Our mission is to get everyone to use the
NetLogger/ULM format for logging
– ULM will hopefully become a “standard”
– This way we can all share log file management

and visualization tools
• Probably not realistic

– Working on filters to convert the following
to/from NetLogger format

• Pablo
• NWS
• Gloperf
• others?

NetLogger

NetLogger API

• NetLogger Toolkit includes application libraries for
generating NetLogger messages
– Can send log messages to:

• file
• host/port (netlogd)
• syslogd
• memory, then one of the above

• C, C++, Java, and Perl, and Python APIs are
currently supported

NetLogger

NetLogger API

• Only 6 simple calls:
– NetLoggerOpen()

• create NetLogger handle

– NetLoggerWrite()
• get timestamp, build NetLogger message, send to destination

– NetLoggerGTWrite()
• must pass in results of Unix gettimeofday() call

– NetLoggerFlush()
• flush any buffered message to destination

– NetLoggerSetLevel()
• set ULM severity level

– NetLoggerClose()
• destroy NetLogger handle

NetLogger

NetLogger API

• Open calls:
NLhandle *lp = NULL;

/* log to a local file */
lp = NetLoggerOpen(NL_FILE, program_name, log_filename,

NULL, 0);

/* log to syslog */
lp = NetLoggerOpen(NL_SYSLOG, program_name, NULL,

NULL, 0);

/* log to “netlogd” on the specified host/port */
lp = NetLoggerOpen(NL_HOST, program_name, NULL,

hostname, DPSS_NETLOGGER_PORT);

/* log to memory, then flush to host/port */
lp = NetLoggerOpen(NL_HOST_MEM, program_name, NULL,

hostname, DPSS_NETLOGGER_PORT);

NetLogger

NetLogger Write Call

• Creates and Writes the log event:

NetLoggerWrite(nl, “EVENT_NAME”,
“EVENTID=%d F2=%d F3=%s F4=%.2f”, id,
user_data, user_string, user_float);

– timestamping is automatically done by library

– the “event name” field is required, all other fields
are optional

– Note: not thread-safe: threaded programs must put
a mutex lock around this call

• Example:

NetLoggerWrite(nl, “HTTPD.START_DISK_READ”,
“HTTPD.FNAME=%s HTTPD.HOST=%s”, fname,
hostname);

NetLogger

Sample NetLogger Use

 lp = NetLoggerOpen(method, progname, NULL,
hostname, NL_PORT);

while (!done)
{

 NetLoggerWrite(lp, "EVENT_START",
"TEST.SIZE=%d", size);

 /* perform the task to be monitored */
 done = do_something(data, size);

 NetLoggerWrite(lp, "EVENT_END");
}
NetLoggerClose(lp);

NetLogger

netlogd

• Use netlogd to collect NetLogger messages at a
central host
– use to avoid the need to sort/merge several log

files from several places
• Can also use netlogd to try to adjust time values for

clock skew
– useful if can’t get NTP installed
– allows clients to adjust all timestamps relative to

the netlogd host’s clock
– accurate only to about 5 ms, and assumes all

clients have the same latency to the netlogd host
– basically a major HACK, but can be useful

NetLogger

Logging to Memory

• Use the NL_HOST_MEM option to send NetLogger
events to memory if you are:
– monitoring bursts of events with a duration < 1 ms

• Flushing of events to disk or network will occur:
– automatically when specified memory block full
– when calling NetLoggerFlush()
– when calling NetLoggerClose()

• Size of memory buffer specified by NL_MAX_BUFFER
in netlogger.h
– default = 10,000 messages (typical message size is

128 bytes)

NetLogger

NetLogger Host/Network Tools

• Wrapped UNIX network and OS monitoring tools to log
“interesting” events using the same log format
– netstat (TCP retransmissions, etc.)
– vmstat (system load, paging, etc.)
– iostat (disk activity)
– ping

• These tools have been wrapped with Perl or Java
programs which:
– parse the output of the system utility
– build NetLogger messages containing the results

NetLogger

NetLogger Host Monitoring Tools

Usage:

nl_vmstat [-d #][-t N][-n][-f logfile] [-m # [host]]

 [-d N] output log messages every N msecs (default = 1000)

 [-t N] run for N minutes and exit (default = run for 60 min)

 [-n] only log if value changes

 [-f logfile] write to file named logfile

 [-m N [host]] logging method: 0 = file, 1 = syslog, 2 = host

NetLogger

Sample NetLogger System
Monitoring Tool

• Example: nl_vmstat -t 60 -d 5000 -m 2 logger.lbl.gov
– Java program will exec vmstat every 5 seconds for 1

hour, and send the results to netlogd on host
logger.lbl.gov

– Generates the following information:
• CPU usage by User
• CPU usage by System

• NetLogger Messages:
DATE=19990706125055.891620 HOST=portnoy.lbl.gov

PROG=nl_vmstat LVL=Usage NL.EVNT=VMSTAT_USER_TIME
VMS.VAL=9

DATE=19990706125055. 891112 HOST=portnoy.lbl.gov
PROG=nl_vmstat LVL=Usage NL.EVNT=VMSTAT_SYS_TIME
VMS.VAL=5

NetLogger

NetLogger Network Tools

• NetLogger tool for SNMP queries
– Usage: nl_snmpget hostname object [port]

• Examples:
– host monitoring

• nl_snmpget unix_host sysName

— Returns: system.sysName.0 = wakko.lbl.gov

– router monitoring
• nl_snmpget routername ipInDelivers 3

—Returns: tcp.tcpInErrs.3 = 4000

– ATM switch monitoring
• nl_snmpget switchname sonetLineFEBEs

• nl_snmpget switchname portTransmittedCells

NetLogger

Other Tools

• NetLogger also includes a set of PERL scripts to
– sort files by timestamp and/or other ULM field
– merge files
– generate gnuplot formatted file from a

NetLogger file

NetLogger

NetLogger Event “Life Lines”

NetLogger

Event ID

• In order to associate a group of events into a
“lifeline”, you must assign an event ID to each
NetLogger event

• Sample Event Ids
– file name
– block ID
– frame ID
– user name
– host name
– etc.

NetLogger

Sample NetLogger Use with
Event IDs

lp = NetLoggerOpen(method, progname, NULL, hostname, NL_PORT);
for (i=0; i< num_blocks; i++) {

NetLoggerWrite(lp, “START_READ”,
“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);

read_block(i);
NetLoggerWrite(lp, “END_READ”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
NetLoggerWrite(lp, “START_PROCESS”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
process_block(i);
NetLoggerWrite(lp, “END_PROCESS”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
NetLoggerWrite(lp, “START_SEND”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
send_block(i);
NetLoggerWrite(lp, “END_SEND”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
}
NetLoggerClose(lp);

NetLogger

NetLogger Visualization Tools

• Exploratory, interactive analysis of the log data has
proven to be the most important means of identifying
problems

– this is provided by nlv (NetLogger Visualization)

• nlv functionality:
– can display several types of NetLogger events at

once
– user configurable: which events to plot, and the

type of plot to draw (lifeline, load-line, or point)
– play, pause, rewind, slow motion, zoom in/out, and

so on
– nlv can be run post-mortem or in real-time

• real-time mode done by reading the output of netlogd as it
is being written

NetLogger

NLV Graph Types

• nlv supports graphing of “points”, load-lines, and
lifelines

NetLogger

NLV

NetLogger

NLV Zoom Feature

NetLogger

NLV Graph Types

NetLogger

NLV Configuration

• NLV is very flexible, with many options settable in
the configuration file.

• Format:
set +/-eventset_name
type <line,point,load>

id [list of ULM field names used to determine which
NetLogger messages get grouped into the same graph
primitive]

group [list of ULM field names which will be mapped to the
same color]

val field_name min_val max_val

annotate [list of field names to display in with annotate
option]

[list of all event ID’s in this lifeline]

• Each nlv graph object needs to be defined by a “set”
• Events and event-sets both use "+" and "-" to indicate

default visibility

NetLogger

NLV Configuration

• Events and eventsets are "stacked" in nlv in the
order given in the configuration file

• Other Keywords:
– groupalias A [b c d]

• list of fields values for the “group” event that can be
considered equivalent

• e.g.: any "hostname" equal to b, c, or d will be
displayed and colored as a member of group A

• Specific config file examples will be shown with
each sample application later in the talk

NetLogger

Example NLV Configuration

display vmstat info as a “loadline”

set +VMSTAT
type load
loadline constructed from messages with the same HOST and NL.EVNT
id [HOST NL.EVNT]
messages with the same HOST get the same color
group HOST
#list of NL.EVNT values in this set_
[+VMSTAT_SYS_TIME +VMSTAT_USER_TIME]

display netstat TCP retransmits as a “point”
set +NETSTAT
type point
ignore values outside the range 0 to 999
val NS.VAL 0.0 999.0
point constructed from messages from the same HOST and PROG
id [HOST PROG]
messages with the same HOST get the same color
group HOST
[+NETSTAT_RETRANSSEGS]

NetLogger

Example NLV Configuration

display server data as a “lifeline”
set +SERVER_READ
type line

lifeline constructed from messages from the same client
and server

id [CLIENT_HOST DPSS.SERV]

messages with the same DPSS.SERV get the same color
group DPSS.SERV

[+APP_SENT +DPSS_SERV_IN +DPSS_START_READ
+DPSS_END_READ +DPSS_START_WRITE +APP_RECEIVE]

NetLogger

Network Time Protocol

• For NetLogger timestamps to be meaningful, all
systems clocks must be synchronized.

– NTP is used to synchronize time of all hosts in
the system.

—NTP is from Dave Mills, U. of Delaware
(http://www.eecis.udel.edu/~ntp/)

– Must have NTP running on one or more primary
servers, and on a number of local-net hosts,
acting as secondary time servers

• Could also place GPS clocks on every host for
even more accurate clocks

NetLogger

How to Instrument Your
Application

• You’ll probably want to add a NetLogger event to the
following places in your distributed application:
– before and after all disk I/O
– before and after all network I/O
– entering and leaving each distributed component
– before and after any significant computation

• e.g.: an FFT operation

– before and after any significant graphics call
• e.g.: certain CPU intensive OpenGL calls

• This is usually an iterative process
– add more NetLogger events as you zero in on the

bottleneck

NetLogger

Does NetLogger affect
application performance?

• There are several things to be careful of when doing
this type of monitoring:
– If logging to disk, don’t log to a nfs mounted disk

• best to log to /tmp, which may actually be RAM (Solaris)

– Probably don’t want to send log messages to a
slow (i.e.: 10BT) or congested network, as you’ll
just make it worse

• log to a local file instead

NetLogger

Sample NetLogger Analysis

• We next show how NetLogger was added to 3
different applications:
– A cache manager for the HPSS
– A remote visualization application
– A HENP data analysis package accessing

parallel remote data service

NetLogger

Example 1: HPSS Storage
Manager Application

• NetLogger was used to test and verify the results
of a Storage Access Coordination System (STACS)
by LBNL’s Data Management Group

• STACS is designed to optimize the use of a disk
cache with an HPSS Mass Storage system, and
tries to minimize tape mount requests by
clustering related data on the same tape

• NetLogger was used to look at:
– per-query latencies
– to show that subsequent fetches of spatially

clustered data "hit" in the cache.
• (http://gizmo.lbl.gov/sm/)

NetLogger

STACS Instrumentation Points

Client

Cache HPSS
Tape Storage

Monitoring Points:
A) request arrives at HPSS
B) start transfer from tape
C) tape transfer finished
D) file available to client
E) file retrieved by client
F) file released by client

NetLogger

NLV for STACS: Tracking File
Requests

NetLogger

Tracking Files and System Performance

NetLogger

NLV Configuration File for this
Application

set +SMANAGER
type line
lifeline defined by messages for the same file and

a given query ID number
id [QUERY FID]
color lines by query ID
group QUERY
[
+B_REQUEST_ARRIVED
+C_TRANSFER_STARTED
+D_STAGE_FINISHED
+E_FILE_PUSHED
+F_FILE_RETRIEVED
+G_FILE_RELEASED
]

NetLogger

Example 2: Parallel Visualization
Application

• Radiance is a suite of programs for the analysis
and visualization of lighting in design.
– Input includes the scene geometry, materials, luminance,

time, date, and sky conditions

• Radiance has been adapted at LBNL to run on
multiple cluster nodes
– The image is broken into many small pieces, and

illumination calculations are performed for each piece
independently

• Used NetLogger to measure:
– overall system throughput
– latency for each stage of getting data, processing it, and

writing it
– patterns of latency which reflect resource contention and

other interaction delays

NetLogger

Client

 Master

= monitoring point

*

*

*

Worker:
Projection

Worker: Ray
Tracer

Worker:
Projection

Worker: Ray
Tracer

Worker:
Projection

Worker: Ray
Tracer

*
*
* *

*
*
*
**

Parallel Ray Tracing (Radiance):
Instrumentation Points

NetLogger

NetLogger Radiance Results:
Before Tuning

NetLogger

NetLogger Radiance Results:
After Tuning

NetLogger

NLV Configuration File for this
Application

 set +RADSERVER

type line

lifeline defined by processing element id

id PE

color lifelines by LTYPE (1=server, 2=client)

group LTYPE

[+S_BEFORE_READ +S_AFTER_READ +S_BEFORE_PROJECTION
+S_AFTER_PROJECTION +S_BEFORE_RTRACE +S_AFTER_RTRACE
+S_BEFORE_WRITE S_AFTER_WRITE]

set +RADCLIENT

type line

id PROG

group LTYPE

[+C_BEFORE_WRITE +C_AFTER_WRITE +C_AFTER_READ +C_END]

NetLogger

Example 3: Parallel Data Block
Server

• The Distributed Parallel Storage Server (DPSS)
– provides high-speed parallel access to remote

data
– Unique features of the DPSS:

• On a high-speed network, can actually access remote
data faster that from a local disk

—57 MB/sec vs 10 MB/sec

• Only need to send parts of the file currently required
over the network

—e.g.: client may only need 100 MB from a 2 GB data set
—analogous to http model

• NetLogger was used for performance tuning and
debugging of the DPSS

NetLogger

DPSS Cache Architecture

Client Application

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

DPSS Master

data blocks

data blocks

data blocks
Logical Block

Requests

� logical to physical
block lookup

� access control
� load balancing

Physical Block
Requests

NetLogger

DPSS Instrumentation

Client
Application

Shared Memory Cache

Block
Request
Thread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

DPSS Master

from other DPSS
servers

*

= monitoring point

DPSS Data Server

to other

DPSS se
rve

rs

Block
Writer
Thread

to other
 clients

Disk Disk DiskDisk

*

*
*
*

**

*

*

*

**

NetLogger

NetLogger Results for the DPSS

NetLogger

NetLogger Results for the DPSS
over a WAN

NetLogger

NLV of DPSS with a HENP client

NetLogger

NLV Configuration File for this
Application

set +STAF
type line
id [HOST PROG]
group HOST
[+STAF_OPEN_R +START_GETEVENT +STOP_GETEVENT
+STAF_CLOSE_R]

set +DPSS_READ
type line

#lifeline defined by DPSS.BID and HOST
id [DPSS.BID HOST]

color lines by DPSS.SERV
group DPSS.SERV

[+APP_SENT +DPSS_MASTER_IN +DPSS_MASTER_OUT
+DPSS_SERV_IN +DPSS_START_READ +DPSS_END_READ
+DPSS_START_WRITE +APP_RECEIVE]

NetLogger

Current Work: JAMM

• Java Agents for monitoring and management
(JAMM)
– Java RMI-based agents are used to start up

NetLogger versions of system tools
• netstat, vmstat, uptime, xntpdc, ping, netperf,

etc.

• Monitoring can be based on application use
– e.g.: only do monitoring while a client is

connected to a server

• For more info see: http://www-didc.lbl.gov/JAMM/

NetLogger

JAMM for active Network
Monitoring

• Network performance data is measured using netperf
(http://www.netperf.org) and ping, and results are
published in an LDAP database

• JAMM agents are used to monitor server activity, and
automatically start netperf and ping experiments
between client and server hosts

• Applications can query LDAP for this information,
and set the optimal TCP buffer size based on this.
– Optimal buffer size equal 2 x (bandwidth * delay)

NetLogger

Java Agents For Monitoring
and Management (JAMM)

Client Application

DPSS Server

DPSS Server

DPSS Server

DPSS Master

LDAP Database

agents

HTTP server

agents

agents

agents

agents

NetLogger

Current Work

• NetLogger enhancements:
– adding Globus security

• plan to use GlobusIO for sending NetLogger socket
connections

– binary transmission/storage format

NetLogger

Grid Monitoring Service

• Our goal is to make this sort of monitoring a standard
“grid service”

• Before this can happen, we need to define:
– archive system

• standard interface to archive system (probably LDAP?)

– Network monitoring system
• Surveyor, NWS, pingER, OCXmon, GloPerf,…
• SNMP security issues (SNMP proxy?)

• Grid Forum “end to end monitoring” working group
• DOE NGI monitoring / instrumentation working group

– goal is to deploy something by the end of the year

NetLogger

 Getting NetLogger

• Source code and some precompiled binaries are
available at:
– http://www-didc.lbl.gov/NetLogger

• Solaris, Linux, and Irix versions of nlv are
currently supported

